

Enero 2021

Informe Técnico para Consulta Pública

Determinación de la vida útil de centrales generadoras con fuentes de energía renovable

Consulta Pública CREE-CP-01-2021 Informe técnico

Para someter a consulta pública la vida útil de centrales generadoras con fuentes de energía renovable

Preparado para la Comisión Reguladora de Energía Eléctrica (CREE)

Este documento ha sido preparado por colaboradores de la Comisión Reguladora de Energía Eléctrica.

María José Quintero	Roberto Rodríguez
Profesional Auxiliar -	Profesional Auxiliar -
Unidad de Fiscalización	Unidad de Mercados
	Eléctricos

José Morán

La elaboración del presente documento contó también con la colaboración y revisión de las siguientes personas:

Gerardo Salgado

Comisionado Presidente	Comisionado	Director Legal del Subsector Eléctrico
Juan José Pérez	Kevin Rodríguez	Esaú Figueroa
Encargado de la Unidad de Fiscalización	Jefe de Mercados Eléctricos	Analista de Mercados Eléctricos

Antonio Martínez

Director

Índice de contenido

1.	Antecedentes6	
2.	Objetivo de la consulta pública	
3.	Determinación de la vida útil	
	3.1. Metodología	7
	3.2. Normativa de países	7
	3.2.1. Ecuador	7
	3.2.1.1. Aspectos regulatorios	7
	3.2.1.2. Metodología para la determinación de los plazos	8
	3.2.1.2.1. Regulación No. CONELEC 003/11:	8
	3.2.1.2.2. Regulación No. CONELEC 004/11:	.10
	3.2.1.3. Plazos por considerar	.10
	3.2.2. México	.11
	3.2.2.1. Aspectos regulatorios	.11
	3.2.2.1.1. Programa de Desarrollo del Sistema Eléctrico Nacional	.11
	3.2.2.1.2. Costos y Parámetros de Referencia para la Formulación de Proyec de Inversión en el Sector Eléctrico (COPAR).	
	3.2.2.2. Plazos por considerar	.12
	3.2.3. España	.13
	3.2.3.1. Aspectos regulatorios	.13
	3.2.3.2. Metodología para la determinación de los plazos	.13
	3.2.3.2.1. Orden IET/1045/2014, del 16 de junio de 2014:	.13
	3.2.3.3. Plazos por considerar	.14
	3.3. Referencias técnicas	. 15
	3.3.1. Proyección de Costos de Generación Eléctrica – IEA & NEA	.15
	3.3.2. Generación eléctrica en Chile, oportunidades y desafíos - Colbún	.15
	3.3.3. Análisis del Costo Nivelado de la Energía (LCOE) - Lazard	.15
	3.3.4. Boletín de datos – Danish Energy Agency (DEA)	.16
	3.3.5. Datos de costo y rendimiento de tecnologías de generación distribuida - NR16	EL
	3.3.6. Regulación y supervisión del sector eléctrico – Pontificia Universidad Cató del Perú 17	lica
	3.4. Datos de centrales de generación en Honduras	. 18
	3.5. Análisis comparativo	. 20
	3.6. Determinación de la vida útil	. 21
	3.6.1. Análisis estadístico con medidas de dispersión	.21
	3.6.1.1. Coeficiente de asimetría de Pearson	.21

	3.6	.1.2.	Interpretación del coeficiente de asimetría de Pearson	21
	3.6.2.	R	esultados	22
	3.6	.2.1.	Centrales generadoras no renovables	22
	3.6	.2.2.	Centrales generadoras renovables	22
4.	Propuest	a de	consulta pública	. 23
	4.1.	Reda	acción actual	23
	4.2.	Reda	acción propuesta	23
5.	Generali	dade	s de la consulta pública	. 24
6.	Bibliogr	afía		. 25
7.	Anexo –	Cro	nograma de consulta pública	. 26
Ín	dice de I	lust	raciones	
Ilu	stración 1.	Plaz	zo de concesión óptimo - Ecuador	9
Ilu	stración 2.	Cen	trales generadoras por tecnología	18
Ilu	stración 3.	Doc	cumentos de referencia	18
Ilu	stración 4.	Inte	rpretación de resultados	21
Ín	dice de T	Γabl	as	
Tal	ola 1. Vida	a útil	de centrales de generación - Ecuador	10
Tal	ola 2. Vida	a útil	de centrales de generación utilizadas en el PIIRCE - México	12
Tal	ola 3. Vida	a útil	de centrales de generación utilizadas en el COPAR 2015 - México	12
Tal	ola 4. Vida	a útil	de centrales de generación - España	14
Tal	ola 5. Vida	a útil	de centrales de generación - IEA&NEA	15
Tal	ola 6. Vida	a útil	de centrales de generación - Colbún	15
Tal	ola 7. Vida	a útil	de centrales de generación - Lazard	16
Tal	ola 8. Vida	a útil	de centrales de generación - DEA	16
			de centrales de generación - NREL	
Tal	ola 10. Vio	da úti	il de centrales de generación - Pontificia Universidad Católica del P	erú 17
Tal	ola 11. Inf	orma	ación obtenida a través del formulario en línea	19
Tal	ola 12. Co	mpar	ración de la vida útil de centrales de generación	20
			il de centrales generadoras no renovables	
			il centrales generadoras renovables	
Ín	dice de I	Ecua	aciones	
Ecı	uación 1. C	Coefi	iciente de asimetría de Pearson	21

1. Antecedentes

La Ley General de la Industria Eléctrica (LGIE) aprobada mediante el Decreto 404-2013 y publicado en el Diario Oficial la Gaceta en fecha 20 de mayo de 2014, tiene por objeto regular las actividades de generación, transmisión, distribución y comercialización de energía eléctrica en el territorio de la Republica de Honduras. El artículo 3 de la LGIE establece la creación de la Comisión Reguladora de Energía Eléctrica (CREE) como institución encargada de regular las actividades del subsector eléctrico, para ello, en el numeral F de este mismo artículo establece las diferentes funciones que como institución posee, dentro de las cuales se encuentra "expedir las regulaciones y reglamentos necesarios para la mejor aplicación de la Ley y el adecuado funcionamiento del subsector eléctrico".

El tercer párrafo del artículo 5 de la LGIE establece que la CREE definirá mediante disposiciones reglamentarias, para cada tecnología de generación que utilice fuentes de energía renovable, la vida útil de los proyectos de las empresas generadoras, la cual será igual a la duración de la respectiva concesión, la licencia de uso del recurso renovable no hídrico y la licencia ambiental.

Con base en lo anterior, la CREE para el cumplimiento de sus funciones y considerando lo establecido en el tercer párrafo del artículo 5 de la LGIE, ha identificado la necesidad de determinar la vida útil de las centrales de generación que utilizan fuentes de energía renovable, para ello, ha elaborado una propuesta con el fin de fortalecer el marco normativo del subsector eléctrico.

2. Objetivo de la consulta pública

Someter a los comentarios de los distintos actores del subsector eléctrico y de la ciudadanía en general, la propuesta de vida útil de las centrales generadoras para cada una de las tecnologías de generación con fuentes de energía renovable. De manera específica, la CREE considera necesario socializar y recibir aportaciones sobre:

- a) La metodología utilizada para la determinación de la vida útil de las centrales de generación de energía eléctrica.
- b) La propuesta para modificar el artículo 10 del Reglamento de la Ley General de la Industria Eléctrica (RLGIE) para adicionar un literal C, referente a la vida útil de las centrales de generación con fuentes de energía renovable.

3. Determinación de la vida útil

3.1. Metodología

La presente sección describe la metodología utilizada para la determinación de la vida útil de las centrales de generación de energía eléctrica. El procedimiento se divide en cuatro etapas, las cuales se describen a continuación:

Etapa I: Revisión de normativa internacional y referencias técnicas.

Como etapa inicial, se revisó normativa internacional, así como diversas referencias técnicas, con el fin de identificar metodologías y procedimientos para determinar la vida útil de las centrales de generación para cada una de las diferentes tecnologías.

Etapa II: Obtención de información adicional.

Posteriormente, se solicitó información a propietarios de centrales generadoras a través de un formulario en línea, con el objetivo de obtener información relevante a la vida útil estimada de las centrales de generación que operan en el territorio hondureño.

Etapa III: Comparación.

En la siguiente etapa, se realizó una comparación de la vida útil en años de las diferentes tecnologías de generación para los países, estudios y datos obtenidos por medio del formulario en línea.

Etapa IV: Determinación de la vida útil.

Como etapa final, se determinó la vida útil para cada una de las tecnologías de generación con base en las referencias internacionales y los datos obtenidos por medio del formulario en línea. Para ello, se utilizó el coeficiente de asimetría de Pearson como medida estadística para medir el grado de covariación entre los datos.

3.2. Normativa de países

3.2.1. Ecuador

3.2.1.1. Aspectos regulatorios

El artículo 44 del Reglamento General de la Ley de Régimen del Sector Eléctrico, determina que las concesiones, permisos y licencias, para proyectos de generación serán otorgados de acuerdo con la regulación que para el efecto dicte el CONELEC, por un plazo de hasta 50 años. (Decreto N° 2.066 - Reglamento general de la Ley de régimen del sector eléctrico, Ecuador, 18 de Septiembre de 1996)

El literal a) del artículo 50 del Reglamento de Concesiones, Permisos y Licencias para la Prestación del Servicio de Energía Eléctrica, señala que la duración de los contratos de concesión, para los proyectos de generación incluidos en el Plan de Electrificación aprobado por el CONELEC o nuevas unidades de generación resultantes del proceso de modernización del sector eléctrico, será determinada por el CONELEC, tomando en cuenta el período requerido por el proyecto para la amortización de la inversión y la obtención de una razonable utilidad, considerando el valor residual esperado, a recuperarse al término de la concesión.

(Decreto Nº 1.274 - Reglamento de Concesiones, Permisos y Licencias para la Prestación del Servicio de Energía Eléctrica, Ecuador, 31 de mazo de 1998)

3.2.1.2. Metodología para la determinación de los plazos

3.2.1.2.1. Regulación No. CONELEC 003/11:

"Determinación de la metodología para el cálculo del plazo y de los precios referenciales de los proyectos de generación y autogeneración".

Objetivo: Definir la metodología para la determinación de los plazos y precios a aplicarse para los proyectos de generación y autogeneración desarrollados por la iniciativa privada, incluyendo aquellos que usen energías renovables.

El CONELEC determina los plazos a ser considerados en los Títulos Habilitantes para los siguientes casos:

- a) Los proyectos de generación delegados a la iniciativa privada.
- b) Los proyectos de generación que usen energías convencionales.
- c) Los proyectos de autogeneración desarrollados por la iniciativa privada.

La determinación del plazo de los proyectos de generación delegados a la iniciativa privada se aplicará para los proyectos de generación que se encuentren dentro del Plan Maestro de Electrificación (PME) que cuenten con sus estudios de factibilidad completos, y una vez que el Estado a través del Ministerio de Electricidad y Energía Renovable haya definido la necesidad de su delegación a la iniciativa privada; y para los proyectos de generación que consten en el PME y que hayan sido propuestos por la iniciativa privada y delegados por el Estado de conformidad con la regulación pertinente.

En el primer caso, el plazo determinado será incluido en las condiciones del Título Habilitante al que tendrá derecho quien resultare ganador en el proceso público de selección, mientras que, para el segundo caso, el plazo será considerado en el proceso de negociación.

a) Proyectos de generación delegados a la iniciativa privada

La metodología establece la determinación del plazo de concesión a través de un proceso iterativo, el cual parte del análisis de varios proyectos de generación para diferentes condiciones de precios de venta de energía, costos de inversión y de administración, operación y mantenimiento y estructura del capital, a fin de establecer el período en el cual el precio permite que la recuperación económica de la inversión pierda sensibilidad ante la variación del tiempo de la valoración de los flujos financieros, para grupos de proyectos de similares características.

En primera instancia se determina la Tasa Interna de Retorno (TIR) del proyecto sobre la base de las características mencionada, y con un precio de remuneración (por potencia instalada) definido como P_1 , para un plazo de concesión inicial establecido previamente de "x" años. El resultado de esta TIR evidenciará cual es el retorno del proyecto para el tiempo de "x" años seleccionados. Para este análisis financiero se deberán considerar los siguientes aspectos:

- a) Estructura del capital,
- b) Precios estimados de venta de la energía,
- c) Vida útil de los proyectos,
- d) Potencias instaladas,

- e) Disponibilidades operativas anuales estimadas,
- f) Costos de inversión y componente de los costos fijos de administración, operación y mantenimiento.

Como siguiente paso, se debe variar el tiempo de concesión, sin variar el precio P₁, hasta que la TIR alcance una Tasa de Descuento (TD), que será calculada en función de la metodología del Costo Promedio Ponderado de Capital (CPPC), considerando como límite máximo para este proceso iterativo la vida útil del proyecto.

El plazo de concesión que resulte cuando la TIR y la TD se igualen, para el proyecto valorado con el precio P₁, será considerado como un primer par ordenado, dentro de una curva precio – plazo que permitirá determinar la elasticidad del precio en función del plazo.

Una vez calculado el primer punto de la curva precio – plazo, se incrementa el precio de remuneración P_1 a P_2 , y con esto se realiza nuevamente el procedimiento descrito en los párrafos anteriores, obteniendo así el segundo par ordenado de la curva precio – plazo.

Este proceso se repite hasta obtener los suficientes puntos en la curva precio — plazo, para determinar el punto donde la variación del precio es mínima respecto a la variación del plazo de concesión. A partir de este punto, una variación del plazo no requiere una variación de la misma magnitud del precio, para hacer que el proyecto, con ciertas características obtenga una TIR similar a la TD.

Como se observa en la Ilustración 1, este resultado corresponde al plazo de concesión "óptimo" desde el punto de vista económico, para un proyecto con un grupo de características G_1 . Las características se refieren a los costos y parámetros técnico-económicos descritos y utilizados para el análisis.

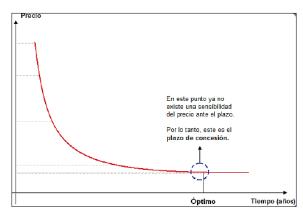


Ilustración 1. Plazo de concesión óptimo - Ecuador

Para ello, se deberán realizar varias simulaciones para varios grupos de características, a fin de que el promedio de los resultados para cada grupo sea el plazo de concesión definitivo para un tipo de tecnología. El objetivo es cubrir la mayor cantidad de variaciones que generen grupos diferentes, a fin de que el resultado refleje un valor que, en promedio, sirva para una gran cantidad de hipótesis que se puedan presentar.

b) Proyectos de generación que utilizan energías convencionales Para la determinación de los plazos de los proyectos de generación que utilizan energías que no cumplan con las características técnicas que les permita acogerse a la Regulación CONELEC 004-11 (Tratamiento para la energía producida con Recursos Energéticos Renovable No Convencionales) o que hayan decidido no acogerse cumpliendo con las características técnicas, se deberá aplicar la metodología definida para los proyectos de generación delegados a la iniciativa privada.

c) Proyectos de autogeneración

Los plazos que se aplicarán en los Títulos Habilitantes de los proyectos de autogeneración desarrollados por la iniciativa privada se determinan como el menor valor entre el plazo definido en esta regulación y el período establecido en la autorización que permita el uso del recurso natural, en los casos que fuera pertinente.

Para el caso de los proyectos de autogeneración cuya capacidad instalada sea menor a 1 MW, no se determina un plazo ya que, de conformidad a la normativa vigente, estos proyectos únicamente deben cumplir un proceso de registro ante el CONELEC.

3.2.1.2.2. Regulación No. CONELEC 004/11:

"Tratamiento para la energía producida con Recursos Energéticos Renovable No Convencionales".

Objetivo: Establecer los requisitos, precios, período de vigencia, y forma de despacho para la energía eléctrica entregada al Sistema Nacional Interconectado y sistemas aislados, por los generadores que utilizan fuentes renovable no convencionales.

Para los efectos de la presente regulación, las energías renovables no convencionales comprenden las siguientes: eólica, biomasa, biogás, fotovoltaica, geotermia y centrales hidroeléctricas de hasta 50 MW de capacidad instalada.

Los plazos que se aplican en los Títulos Habilitantes de los proyectos de generación que utilizan energías renovables no convencionales y que por sus características técnicas se acogen a la regulación específica para este tipo de proyectos, son los establecidos en la Regulación ARCONEL 04-11.

3.2.1.3. Plazos por considerar

Tabla 1. Vida útil de centrales de generación - Ecuador

Tecnología	Generación delegada a la iniciativa privada*	Energías renovables no convencionales**	Autogeneradores
Vapor	30		30
MCI < 514 rpm	20		20
MCI 514 - 900 rpm	15		15
MCI > 900 rpm	7		7
Gas industrial	20		20
Gas jet	7		7
Eólicas	25	25	25
Fotovoltaicas	20	20	20
Biomasa – Biogás	15	15	15
Geotérmicas	30	30	30
Hidro $0 - 0.5$ MW	-	20	20
Hidro 0,5 – 5 MW	20-30	30	30
Hidro 5 – 10 MW	23-40	40	40
Hidro 10 – 50 MW	28-40	40	40
Hidro > 50 MW	32-50		50

*Aplica también para los proyectos de generación que utilizan energías que no cumplen con las características técnicas que les permita acogerse a la Regulación CONELEC 004-11 (Tratamiento para la energía producida con Recursos Energéticos Renovable No Convencionales) o que han decidido no acogerse cumpliendo con las características técnicas. Fuente: (Regulación No. CONELEC 003/11 - Determinación de la metodología para el cálculo del plazo y de los precios referenciales de los proyectos de generación y autogeneración, Ecuador, 14 de abril de 2011).

**Fuente: (Regulación No. CONELEC 004/11 - Tratamiento para la energía producida con Recursos Energéticos Renovable No Convencionales, Ecuador, 14 de abril de 2011)

3.2.2. México

3.2.2.1. Aspectos regulatorios

El Artículo 11 de la Ley de la Industria Eléctrica (LIE), establece que la Secretaría de Energía está facultada para: ... III. Dirigir el proceso de planeación y la elaboración del Programa de Desarrollo del Sistema Eléctrico Nacional (PRODESEN). (Ley de la Industria Eléctrica, México, 28 de abril de 2014)

El PRODESEN contiene la planeación del Sistema Eléctrico Nacional que reúne los elementos relevantes del Programa Indicativo para la Instalación y Retiro de Centrales Eléctricas (PIIRCE), así como los programas de ampliación y modernización de la Red Nacional de Transmisión (PAMRNT) y de las Redes Generales de Distribución (PAMRGD). Asimismo, es la base fundamental para definir los proyectos que los Transportistas y Distribuidores llevarán a cabo previa instrucción de la SENER.

El artículo 5 del Reglamento de la Ley de la Industria Eléctrica (RLIE), señala que para la elaboración del PRODESEN se debe considerar al menos (Reglamento de la Ley de la Industria Eléctrica, México, 31 de octubre de 2014):

- I. ...
- II. La coordinación de los programas indicativos para la instalación y retiro de Centrales Eléctricas con el desarrollo de los programas de ampliación y modernización de la Red Nacional de Transmisión y las Redes Generales de Distribución.
- III. ...
- IV. Los programas indicativos para la instalación y retiro de Centrales Eléctricas que prevea la infraestructura necesaria para asegurar la Confiabilidad del Sistema Eléctrico Nacional.
- V. ...
- VI. ...

3.2.2.1.1. Programa de Desarrollo del Sistema Eléctrico Nacional

El PIIRCE es un insumo para determinar la expansión de la Red Nacional de Transmisión y las Redes Generales de Distribución, y es fuente de información para la toma de decisiones de los Participantes del Mercado, los Transportistas, los Distribuidores, las autoridades involucradas, el público en general e inversionistas.

3.2.2.1.2. Costos y Parámetros de Referencia para la Formulación de Proyectos de Inversión en el Sector Eléctrico (COPAR).

La Comisión Federal de Electricidad (CFE) actualiza periódicamente los principales parámetros técnico-económicos que intervienen en el cálculo del costo nivelado del kWh neto generado de las diversas tecnologías para la producción de energía eléctrica.

El objeto es consolidar una base de información confiable que sirva como referencia para los modelos electrotécnicos y económicos que la CFE utiliza en la planificación del sistema eléctrico, así como en la evaluación económica y financiera de tecnologías y proyectos de generación.

3.2.2.2. Plazos por considerar

Tabla 2. Vida útil de centrales de generación utilizadas en el PIIRCE - México

Tecnología	Vida útil (años)
Carboeléctrica	40
Ciclo combinado	30
Combustión interna	25
Eólica	25
Frenos Regenerativos	25
Geotérmica	30
Hidroeléctrica	60
Lecho Fluidizado	40
Nucleoeléctrica	60
Solar fotovoltaica	30
Termoeléctrica convencional	30
Termosolar	35
Turbogás	30

Fuente: (Programa de Desarrollo del Sistema Eléctrico Nacional 2018-2032 (PRODESEN), México), datos establecidos sobre la base de distintas referencias internacionales y el estudio de Costos y Parámetros de Referencia para la Formulación de Proyectos de Inversión en el Sector Eléctrico (COPAR).

Tabla 3. Vida útil de centrales de generación utilizadas en el COPAR 2015 - México

Tecnología	Vida útil (años)
Termoeléctrica convencional con	
desulfurador y equipo para control	30
de partículas	
Turbogás aeroderivada gas	30
Turbogás industrial gas	30
Turbogás aeroderivada diésel	30
Ciclo combinado gas	30
Combustión interna	20-25
Carboeléctrica sin desulf.	40
Carb. supercrítica sin desulf.	40
Carb. supercrítica c/desulf.	40
Nuclear	60
Geotérmica	30
Hidroeléctrica	50
Eólica	25
Solar fotovoltaica	25
Lecho fluidizado circulante	20
(AFBC) con precipitador elec.	30
Ciclo Combinado con campo solar	30
(ISCC)	30

Fuente: (Costos y Parámetros de Referencia para la Formulación de Proyectos de Inversión en el Sector Eléctrico 2015 (COPAR), México, 2015), datos establecidos sobre la base de distintas referencias internacionales y el estudio de Costos y Parámetros de Referencia para la Formulación de Proyectos de Inversión en el Sector Eléctrico

3.2.3. España

3.2.3.1. Aspectos regulatorios

El Real Decreto-ley 9/2013, del 12 de julio de 2013 por el que se adoptan medidas urgentes para garantizar la estabilidad financiera del sistema eléctrico, señala que, dicho marco articulará una retribución que permitirá a las instalaciones renovables, a las de cogeneración y residuos cubrir los costes necesarios para competir en el mercado en nivel de igualdad con el resto de las tecnologías y obtener una rentabilidad razonable.

Para el cálculo de la retribución específica se considerará para una instalación tipo, los ingresos por la venta de la energía generada valorada al precio del mercado de producción, los costes de explotación medios necesarios para realizar la actividad y el valor de la inversión inicial de la instalación tipo, todo ello para una empresa eficiente y bien gestionada. De esta manera se instaura un régimen retributivo sobre parámetros estándar en función de las distintas instalaciones tipo que se establezcan. (Real Decreto-ley 9/2013, España, 12 de julio de 2013)

El Real Decreto 413/2014, del 6 de junio de 2014, establece en su artículo 13 que habrá de establecerse, mediante orden del Ministro de Industria, Energía y Turismo, previo acuerdo de la Comisión Delegada para Asuntos Económicos, una clasificación de instalaciones tipo, con su código específico, en función de la tecnología, potencia instalada, antigüedad, sistema eléctrico, así como cualquier otra segmentación que se considere necesaria para la aplicación del régimen retributivo.

A cada instalación tipo le corresponderán un conjunto de parámetros retributivos que concreten el régimen retributivo específico y permitan la aplicación del mismo a las instalaciones asociadas a dicha instalación tipo, siendo los más relevantes la retribución a la inversión por unidad de potencia, la retribución a la operación, la vida útil regulatoria, el número de horas de funcionamiento mínimo, el umbral de funcionamiento y el número de horas de funcionamiento máximo a efectos de percepción de la retribución a la operación, en su caso. Entre todos los parámetros se fijan la vida útil regulatoria y el valor estándar de la inversión inicial de la instalación tipo que no podrá volver a revisarse. (Real Decreto 413/2014, España, 6 de junio de 2014)

3.2.3.2. Metodología para la determinación de los plazos

3.2.3.2.1. Orden IET/1045/2014, del 16 de junio de 2014:

"Por la que se aprueban los parámetros retributivos de las instalaciones tipo aplicables a determinadas instalaciones de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos".

Objetivo: Constituye el objeto de esta orden el establecimiento de los parámetros retributivos de las instalaciones tipo correspondientes a las instalaciones incluidas en el ámbito de aplicación de esta orden para el primer semiperiodo regulatorio definido en la disposición adicional primera del Real Decreto 413/2014, de 6 de junio, por el que se regula la actividad de producción de energía eléctrica a partir de fuentes de energía renovables, cogeneración y residuos, sin perjuicio de lo previsto en su artículo 20.

Para ello, se ha considerado una vida útil regulatoria representativa para cada instalación tipo, en función de la vida de diseño de los equipos principales y considerando que se llevan a cabo las actuaciones de mantenimiento preventivo y correctivo adecuadas. Dicha vida útil permanecerá invariable para cada instalación tipo, según lo establecido en el artículo 14 de la Ley 24/2013, de 26 de diciembre. (Ley 24/2013, España, 26 de diciembre de 2013)

3.2.3.3. Plazos por considerar

Tabla 4. Vida útil de centrales de generación - España

a.1 Cogeneración. a.2 Energías residuales. b.1 Energía solar. b.2 Energía eólica. b.2 Energía eólica. b.3 Geotérmica, hidrotérmica, aerotérmica, de las olas, de las mareas, la de las rocas calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas < 10 MW, b.6 Generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal ** residuos domésticos y similares), c.2 Combustible principal es de subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible priocipal o forestales de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre o cenizas).	Grupo	Subgrupo	Vida útil (años)
a.1.3 Combustibles. b.1 Energía solar. b.2 Energía eólica. b.2 Energía eólica. b.2 Energía eólica. b.2.1 Eólica tierra, b.2.2 Eólica marina. 20 20 20 20 20 20 20 20 20 2	a.1 Cogeneración.	a.1.1 Gas natural,	25
b.1 Energía solar. b.2 Energía eólica. b.2 Energía eólica. b.3 Geotérmica, hidrotérmica, aerotérmica, de las olas, de las marcas, la de las rocas calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.5 Hidroeléctricas > 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal otros residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	a 2 Francías maidralas	a.1.2 Petróleo o carbón,	25
b.1 Energía solar. b.2 Energía eólica. b.3 Geotérmica, hidrotérmica, aerotérmica, de las olas, de las mareas, la de las rocas calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.5 Hidroeléctricas > 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal ** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	a.2 Ellergias residuales.	a.1.3 Combustibles.	23
b.2 Energía eólica. b.3 Geotérmica, hidrotérmica, aerotérmica, de las olas, de las mareas, la de las rocas calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles principal sinstalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	h 1 Engraío color	b.1.1 Fotovoltaica,	30
b.2 Energia eolica. b.3 Geotérmica, hidrotérmica, aerotérmica, de las olas, de las mareas, la de las rocas calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal ** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	0.1 Ellergia solar.	b.1.2 Termosolar.	25
b.3 Geotérmica, hidrotérmica, aerotérmica, de las olas, de las mareas, la de las rocas calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal ** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	b.2 Energía eólica.	/	20
de las olas, de las mareas, la de las rocas calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos domésticos y similares), c.2 Combustible principal otros residuos domésticos y similares), c.3 (herederos subgrupo c.1, combustible principal sinstalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	b.3 Geotérmica, hidrotérmica, aerotérmica,		
calientes y secas, oceanotérmica y energía de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			20
de las corrientes marinas. b.4 Hidroeléctricas < 10 MW, b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal ** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			20
b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			
b.5 Hidroeléctricas > 10 MW, b.6 Generación o cogeneración con combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	b.4 Hidroeléctricas < 10 MW,		
combustible principal* biomasa procedente de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			
de cultivos energéticos, actividades agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal ** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	b.6 Generación o cogeneración con		
agrícolas, ganaderas, forestales o similares, b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	combustible principal* biomasa procedente		
b.7 Centrales de generación o cogeneración que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	de cultivos energéticos, actividades		
que utilicen como combustible principal biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	agrícolas, ganaderas, forestales o similares,		
biolíquido, producido a partir de biomasa, o biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	b.7 Centrales de generación o cogeneración		
biogás procedente de la digestión anaerobia de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	que utilicen como combustible principal		25
de cultivos energéticos, residuos y otros) y, b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	biolíquido, producido a partir de biomasa, o		
b.8 Centrales de generación o cogeneración que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	biogás procedente de la digestión anaerobia		
que utilicen como combustible principal biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	de cultivos energéticos, residuos y otros) y,		
biomasa procedente de instalaciones industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	b.8 Centrales de generación o cogeneración		
industriales del sector agrícola o forestal). c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	que utilicen como combustible principal		
c.1 Combustible principal** residuos domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	biomasa procedente de instalaciones		
domésticos y similares), c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	industriales del sector agrícola o forestal).		
c.2 Combustible principal otros residuos distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	c.1 Combustible principal** residuos		
distintos a los del subgrupo c.1, combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	domésticos y similares),		
combustibles de b.6, b.7 y b.8 en porcentaje < 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	c.2 Combustible principal otros residuos		
< 90%, licores negros y antiguas instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre	distintos a los del subgrupo c.1,		
instalaciones incluidas en subgrupo c.3) y c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			
c.3 (herederos subgrupo c.4, combustible productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			25
productos de explotaciones mineras de calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			23
calidades no comerciales para la generación eléctrica por su elevado contenido en azufre			
eléctrica por su elevado contenido en azufre			
o cenizas).			
e: (Losana, 2014) & (Orden IFT/1045/2014, España, 16 de junio de 2014)	o cenizas).		

Fuente: (Losana, 2014) & (Orden IET/1045/2014, España, 16 de junio de 2014)

^{*}Combustible principal si supone como mínimo el 90% de la energía primaria utilizada, medida por el poder calorífico inferior.

^{*}Combustible principal si supone como mínimo el 70% de la energía primaria utilizada, medida por el poder calorífico inferior.

3.3. Referencias técnicas

3.3.1. Proyección de Costos de Generación Eléctrica – IEA & NEA

Para la comparación de costos de generación, la International Energy Agency (IEA) y la Nuclear Energy Agency (NEA), utilizan el Costo Nivelado de la Energía (LCOE), el cual se considera una métrica ampliamente utilizada en la formulación, modelado y discusión de políticas públicas.

El principal desafío de esta metodología es garantizar la comparabilidad de los datos recibidos mientras se preserva la información específica de cada país. Para ello, se requirió armonizar los valores representativos a los diversos aspectos que influyen en el cálculo, entre los cuales se encuentra, la vida útil de las centrales generadoras.

Tabla 5. Vida útil de centrales de generación - IEA&NEA

Tecnología	Vida útil (años)
Almacenamiento en baterías	10
Energía solar fotovoltaica, eólica terrestre y	25
marina	25
Centrales de gas	30
Carbón y geotermia	40
Nuclear	60
Hidroeléctrica	80

Fuente: (International Energy Agency (IEA) & Nuclear Energy Agency (NEA), 2020)

3.3.2. Generación eléctrica en Chile, oportunidades y desafíos - Colbún

En el año 2015, Colbún, una empresa de origen chileno dedicada a la generación de energía eléctrica, realizó un estudio sobre el potencial hídrico en el territorio chileno, para el cual, analizó a fin de comparación la vida útil de centrales de generación de diversas tecnologías.

Tabla 6. Vida útil de centrales de generación - Colbún

Tecnología	Vida útil (años)
Fotovoltaica	20
Eólica	20
Energía termosolar de	25
concentración	
Carbón	25-30
Diésel	25-30
Biomasa	25-30
Hidroeléctrica de pasada	30-35
Central de ciclo combinado	25-30
con turbina de gas	25-30
Geotermia	30
Hidroeléctrica de embalse	40-50

Fuente: (Colbún, 2015)

3.3.3. Análisis del Costo Nivelado de la Energía (LCOE) - Lazard

El Análisis del Costo Nivelado de la Energía, es un estudio que analiza en profundidad los costos de las energías alternativas en comparación con las tecnologías de generación convencionales. Este estudio aborda un análisis comparativo del "Costo Nivelado de la Energía" considerando numerosos factores y supuestos para las diversas tecnologías de generación examinadas, entre los cuales se encuentra, la vida útil de las centrales de generación.

Tabla 7. Vida útil de centrales de generación - Lazard

Tecnología	Vida útil (años)
Fotovoltaica residencial	20
Fotovoltaica industrial y	25
comercial	23
Fotovoltaica en microrredes	30
Fotovoltaica a gran escala	
(policristalino y	30
monocristalino)	
Fotovoltaica a gran escala	30
(capa fina)	30
Torre solar térmica con	35
almacenamiento	33
Celdas de combustible	20
Microturbinas	20
Geotermia	25
Biomasa	25
Eólica terrestre	20
Eólica marina	20
Motor diésel	20
Gas natural	20
Gasificación integrada en	40
ciclo combinado	40
Nuclear	40
Carbón	40
Ciclo combinado	20

Fuente: (LAZARD, 2016)

3.3.4. Boletín de datos – Danish Energy Agency (DEA)

La Agencia Danesa de Energía y Energinet publican periódicamente boletines de datos con el fin de proporcionar insumos sobre el comportamiento económico y ambiental de instalaciones de generación de distintas tecnologías, dichos datos son utilizados por la Agencia Danesa de Energía para realizar sus proyecciones energéticas.

Tabla 8. Vida útil de centrales de generación - DEA

Tecnología	Vida útil (años)
Eólica	25
Solar	30
Pellets de madera	25
Carbón	15-40
Gas natural	25
Astillas de madera	15-25
Uranio	60

Fuente: (Danish Energy Agency (DEA))

3.3.5. Datos de costo y rendimiento de tecnologías de generación distribuida - NREL

La siguiente tabla muestra los rangos de vida útil de varias tecnologías, estos fueron estimados con base en entrevistas a expertos del National Renewable Energy Laboratory (NREL) que han trabajado con dichas tecnologías y también con base en una búsqueda bibliográfica, sin

embargo, la información sobre estudios reales es limitada, la mayor parte de la literatura a la que se hace referencia incluía una vida útil supuesta para una tecnología determinada. Es importante mencionar que estos valores no incluyen datos estadísticos de proyectos reales.

Tabla 9. Vida útil de centrales de generación - NREL

Tecnología	Vida útil (años)
Fotovoltaica	25-40
Eólica	20
Cogeneración	20-30
Biomasa	20-30
Calentamiento de agua solar	10-25
Calefacción solar	30-40
Bomba de calor de fuente	20 para componentes interiores
terrestre	100 para bucle de tierra

Fuente: (National Renewable Energy Laboratory (NREL), 2016)

3.3.6. Regulación y supervisión del sector eléctrico – Pontificia Universidad Católica del Perú

Presenta algunos elementos de teoría microeconómica relacionados con organización industrial y la teoría y métodos de regulación que permiten entender algunas de las disyuntivas que se enfrentan en la organización de los mercados eléctricos, asimismo, contiene los aspectos esenciales de la industria eléctrica y las opciones de organización del sector eléctrico; la regulación de la generación, transmisión y distribución de electricidad.

Tabla 10. Vida útil de centrales de generación - Pontificia Universidad Católica del Perú

Tecnología	Vida útil (años)
Diésel	25
Gas natural a ciclo simple	25
Gas natural a ciclo combinado	25
Hidráulica	40

Fuente: (Pontificia Universidad Católica del Perú, 2008)

3.4. Datos de centrales de generación en Honduras

Con el fin de incluir la participación de los interesados, en específico, de los propietarios de centrales generadoras en Honduras, se realizó un formulario en línea, el cual recogió datos sobre la vida útil estimada e información general de las centrales y sociedades en mención, para ello, se remitió dicho formulario a las principales asociaciones del país, entre la cuales se encuentra, la Asociación Hondureña de Productores de Energía Eléctrica (AHPEE), la Asociación Hondureña de Energía Renovable (AHER) y la Asociación de Productores de Azúcar de Honduras (APAH).

En total, se recogieron catorce respuestas distintas, que corresponden a catorce centrales de generación, de las cuales, el 43% son hidroeléctricas a filo de agua, el 29% fotovoltaicas, el 14% eólicas y el 14% restante, hidroeléctricas con embalse, tal como se muestra en la Ilustración 2.

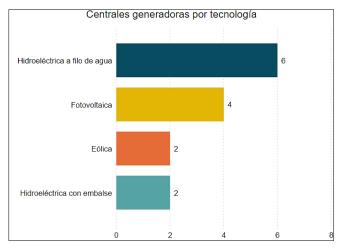


Ilustración 2. Centrales generadoras por tecnología

La Ilustración 3 muestra que, de la información recolectada, la mayor parte de los participantes aseguran haber obtenido el valor de vida útil estimada a partir de las recomendaciones del fabricante, el resto, asegura haberlo obtenido por medio de estudios, diseños, contratos y referencias de la industria.

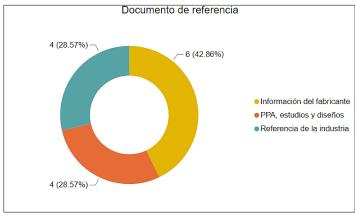


Ilustración 3. Documentos de referencia

La Tabla 11 contiene un resumen de los datos más relevantes que se obtuvieron a través del formulario en línea.

Tabla 11. Información obtenida a través del formulario en línea

Nombre de la sociedad	Núm. De registro público	Nombre de la central generadora	Capacidad instalada (MW)	Tecnología	Vida útil estimada (años)	Documento de referencia
Vientos de Electrotecnia	G-S27	Eólico San Marcos	50.00	Eólica	20-30	Información del fabricante
Vientos de San Marcos	G-S55	Eólico Chinchayote	46.78	Eólica	20-30	Información del fabricante
Compañía Hondureña de Energía Solar, S.A. de C.V. (COHESSA)	G-S14	Fotovoltaico Valle	50.00	Fotovoltaica	25	Unidad Generadora: Paneles Fotovoltaicos
Generación Renovable de Honduras (HELIOS)	G-S46	Solar Helios	25.00	Fotovoltaica	20-30	Información del fabricante
Mecanismos de Energía Renovable	G-S42	Solar del Sur	25.00	Fotovoltaica	20-30	Información del fabricante
Solar Power, S.A. de C.V. (SOPOSA)	G-S13	Fotovoltaico Nacaome	50.00	Fotovoltaica	25	Unidad Generadora: Paneles Fotovoltaico
Acquafutura S.A. de C.V.	G-S72	Hidroeléctrica San Alejo	2.10	Hidroeléctrica a filo de agua	40	A partir de los diseños de obras civiles y electromecánicas
Electrotecnia	G-S43	Hidroeléctrica La Gloria	5.83	Hidroeléctrica a filo de agua	50	Referencia de la industria
Hidroeléctrica Río Blanco	G-S34	Hidroeléctrica Río Blanco	5.24	Hidroeléctrica a filo de agua	50	Referencia de la industria
Industrias Contempo	G-S28	Hidroeléctrica San Juan	6.40	Hidroeléctrica a filo de agua	50	Referencia de la industria
Ingeniería Técnica SA de CV	G-S23	Central Hidroeléctrica Morja	8.60	Hidroeléctrica a filo de agua	30	Contrato con ENEE 062-2010
Sociedad Eléctrica Mesoamericana S.A. de C.V. (SEMSA)	G-S16	Central Hidroeléctrica Mezapa	9.40	Hidroeléctrica a filo de agua	30	Plazo del PPA, Estudio de Factibilidad y la calidad de los equipos instalados y las obras ejecutadas las cuales fueron validas por el ingeniero independiente (de los Financistas) y su expectativa de vida podrá ser mas de 100 años con el correcto y apropiado mantenimiento.
Energía y Transmisión S.A. de C.V.	G-S26	Cuyamapa	12.30	Hidroeléctrica con embalse	50	Referencia de la industria
Hidronaransa		Naranjito, Santa Barbara	63.50	Hidroeléctrica con embalse	50	PPA, estudios y diseños

3.5. Análisis comparativo

Tabla 12. Comparación de la vida útil de centrales de generación

m 1 /			Regulacion	es							I	Referen	cias técnicas						ъ. п.			
Tecnología	Ecuador		México	México			EIA & NEA		Colbún (C	hile)	Lazaro	d	DEA		NREI	L	PUCP		Datos Hond	uras		
	N/A		Ciclo combinado	30			N/A		Ciclo combinado con turbina de gas	25-30	Ciclo combinado	20	N/A		N/A		N/A		N/A			
	MCI < 514 rpm	20	Combustión																			
NI-	MCI 514 - 900 rpm	15	Combustión interna Turbogás Carbón Nuclear N/A Selíco Fotovoltaico N/A Geotérmico Hidroeléctrico Hidroeléctrico	25	Petróleo, Carbón o	25	N/A		Diésel	25-30	Motor Diésel	20	N/A		N/A		Diésel	25	N/A			
No Renovable	MCI > 900 rpm	7			Combustibles																	
	Gas industrial	20	Turbogás 30						Centrales de				Gasificación integrada en									
	Gas jet	7					Gas	30	N/A		ciclo combinado	40	N/A		N/A		N/A		N/A			
	Carbón	30	Carbón 40 Nuclear 60 N/A Eólico 25	40			Carbón	40	Carbón	25-30	Carbón	40	Carbón	15-40	N/A		N/A		N/A			
	N/A		Nuclear	60			Nuclear	60	N/A		Nuclear	40	Nuclear 60		N/A		N/A		N/A			
	N/A		N/A		Gas Natural	25	N/A		N/A		Gas Natural	20	Gas Natural	25	N/A		Gas Natural	25	N/A			
	Eólico	25	Eólico	25	Eólico	20	Eólico	25	Eólico	20	Eólico	20	Eólico	25	Eólico	20	N/A		Eólico	20-30		
	Fotovoltaico	20	Fotovoltaico	30	Fotovoltaico	30	Fotovoltaico	25	Fotovoltaico	20	Fotovoltaico	30	Fotovoltaico	30	Fotovoltaico	25-40	N/A		Fotovoltaico	20-30		
	Biomasa	15	N/A		Biomasa	25	N/A		Biomasa	25-30	Biomasa	25	Biomasa	25	Biomasa	20-30	N/A		N/A			
	Geotérmico	30	Geotérmico	30	Geotérmico	20	Geotérmico	40	Geotérmico	30	Geotérmico	25	N/A		Geotérmico	20	N/A		N/A			
Renovable	Hidro 0 – 0,5 MW	20			Hidro < 10				Hidroeléctrica	30-35									Hidroeléctrica a	30-50		
	Hidro 0,5 - 5 MW	20-30			MW				de pasada	30-33									filo de agua	30-30		
	Hidro 5 – 10 MW	23-40	Hidroeléctrico	60		25	Hidroeléctrico	80			N/A		N/A		N/A		Hidroeléctrico	40				
	Hidro 10 – 50 MW	28-40			Hidro >10 MW				Hidroeléctrico de embalse	40-50									Hidroeléctrica con embalse	50		
	Hidro > 50 MW	32-50																				

3.6. Determinación de la vida útil

A la vista de todos los datos e información recabada, se procedió a analizar cada uno de los casos de manera individual a través de un análisis estadístico utilizando medidas de dispersión.

3.6.1. Análisis estadístico con medidas de dispersión

Las medidas de dispersión tienen por finalidad la síntesis de datos en un valor representativo, además, cuantifican la separación, la dispersión y la variabilidad de los valores de la distribución respecto al valor central. Existen medidas de dispersión absolutas, las cuales no son comparables entre diferentes muestras, así como también, existen medidas de dispersión relativas, las cuales, si permiten ser comparadas, por tal razón, para el presente análisis, se utilizó el coeficiente de asimetría de Pearson, una medida de dispersión relativa que se define como se muestra en la Ecuación 1.

3.6.1.1. Coeficiente de asimetría de Pearson

Ecuación 1. Coeficiente de asimetría de Pearson

$$A_{s} = \frac{3(\overline{X} - Me)}{S}$$

Donde:

 A_s = Coeficiente de asimetría de Pearson.

 \overline{X} = Media aritmética.

Me = Mediana.

S = Desviación estándar.

3.6.1.2. Interpretación del coeficiente de asimetría de Pearson

A partir del valor obtenido con la ecuación presentada anteriormente, se deben considerar los parámetros siguientes:

- 1. Si $A_s = 0$, no hay sesgo, por lo tanto, la distribución es insesgada, es decir, la media, la mediana y la moda son iguales. (Ver Ilustración 4).
- 2. Si $A_s > 0$ la distribución tiene un sesgo positivo o a la derecha, es decir, la media y la mediana están a la derecha de la moda. (Ver Ilustración 4).
- 3. Si $A_s < 0$ la distribución tiene un sesgo negativo o a la izquierda, es decir, la media y la mediana están a la izquierda de la moda. (Ver Ilustración 4).

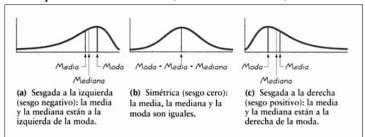


Ilustración 4. Interpretación de resultados

Con base en lo planteado, se realizó un análisis estadístico para cada una de las tecnologías, utilizando el coeficiente de asimetría de Pearson, con el objetivo de definir los valores que fueran más representativos entre todo el conjunto de datos.

3.6.2. Resultados

3.6.2.1. Centrales generadoras no renovables

La Tabla 13 muestra los valores de vida útil obtenidos para cada una de las tecnologías no renovables siendo posible observar que la mayor parte de las tecnologías poseen valores que rondan los 25 y 30 años de vida útil, a excepción de la energía nuclear, la cual, posee una vida útil de 50 años.

Tabla 13. Vida útil de centrales generadoras no renovables

Tecnología	Vida útil (años)
Ciclo combinado	25-30
Combustión interna	25
Gas	30
Carbón	30-40
Nuclear	50
Gas Natural	25

3.6.2.2. Centrales generadoras renovables

De igual forma, la Tabla 14 muestra los valores de vida útil obtenidos para cada una de las tecnologías renovables siendo posible observar que las centrales hidroeléctricas con capacidad superior a 10 MW son las que poseen la mayor cantidad de años, seguidas por las hidroeléctricas con capacidad inferior a 10 MW.

Tabla 14. Vida útil centrales generadoras renovables

Tecnología	Vida útil (años)
Eólico	25
Fotovoltaico	30
Biomasa	25
Geotérmico	30
Hidroeléctrico <10 MW	40
Hidroeléctrico >10 MW	50

4. Propuesta de consulta pública.

La propuesta consiste en modificar el artículo 10 del RLGIE para adicionar el literal C referente a la vida útil de las centrales de generación con fuentes de energía renovable determinada en la sección 3:

4.1. Redacción actual

"Artículo 10. Habilitación Legal de las Empresas del Subsector Eléctrico. Previo a realizar las actividades reguladas por la Ley, las empresas del subsector eléctrico deben ser habilitadas legalmente cumpliendo con las disposiciones establecidas en la normativa vigente, incluyendo lo siguiente:

A. Inscripción en el Registro Público de Empresas del Sector Eléctrico. Las empresas del subsector eléctrico deben inscribirse en el Registro Público de Empresas del Sector Eléctrico llevado por la CREE, proveyendo toda la información solicitada en el formulario de inscripción. La información y requisitos de inscripción serán aprobados por la CREE de conformidad con las funciones que la Ley le otorga.

B. Actualización en el Registro Público de Empresas del Sector Eléctrico. Toda empresa del subsector eléctrico que se encuentre inscrita tiene la obligación de reportar a la CREE cualquier modificación en la documentación que fue presentada para su inscripción en el registro público o cambios en las características de las instalaciones o de su operación. Dichas empresas tendrán un plazo de veinte (20) días hábiles para notificar las modificaciones o cambios antes descritos, una vez que los mismos hayan surtido efecto, utilizando los canales dispuestos por la CREE para dicho fin."

4.2. Redacción propuesta

"Artículo 10. Habilitación Legal de las Empresas del Subsector Eléctrico. Previo a realizar las actividades reguladas por la Ley, las empresas del subsector eléctrico deben ser habilitadas legalmente cumpliendo con las disposiciones establecidas en la normativa vigente, incluyendo lo siguiente:

<i>A</i>	•••		
В		.	

C. Vida útil de Centrales Generadoras con Fuentes de Energía Renovable. La vida útil de las centrales generadoras con fuentes de energía renovable que hace referencia la Ley es la siguiente:

Tecnología	Vida útil (años)
Eólico	25
Fotovoltaico	30
Biomasa	25
Geotérmico	30
Hidroeléctrico <10 MW	40
Hidroeléctrico >10 MW	50

,,

5. Generalidades de la consulta pública.

El Procedimiento para Consultas Públicas de la CREE, en su Artículo 1, párrafo 2, indica: "Al establecer un mecanismo estructurado, se estandariza una práctica no vinculante y homogénea que permite obtener la opinión de las personas o partes potencialmente impactadas por la reglamentación propuesta o asunto en consulta, disponiendo de elementos que promuevan la participación efectiva, asegurando transparencia, adecuada difusión y suficiente información."

De conformidad con este procedimiento interno, a continuación, se describen los plazos que aplicarán para la presente consulta pública:

- a) El plazo para presentar posiciones, observaciones y comentarios será de cinco (5) días calendario contados a partir de la fecha que se indique en la invitación a la consulta. Ante solicitud justificada de parte interesada, o de considerarlo necesario por la CREE, ésta podrá ampliar el plazo hasta por quince (15) días calendario adicionales del plazo original.
- b) Dentro de los tres (3) días hábiles siguientes al cierre del proceso de consulta, la CREE publicará en su sitio web dedicado a la consulta el documento "Comentarios Recibidos" conteniendo las opiniones, comentarios y observaciones recibidas y admisibles.
- c) La CREE tendrá un plazo de hasta seis (6) días calendario, para analizar los comentarios recibidos que califican como admisibles y publicar en su sitio web el Informe de Resultados una vez que sea aprobado por el Directorio de Comisionados, dando por finalizado el proceso. Si no es posible publicarlo dentro del plazo en mención, la CREE informará el nuevo plazo, que no podrá ser mayor a quince (15) días calendario adicionales.

6. Bibliografía

- 1. Colbún. (2015). Generación eléctrica en Chile, oportunidades y desafíos.
- 2. Costos y Parámetros de Referencia para la Formulación de Proyectos de Inversión en el Sector Eléctrico 2015 (COPAR), México. (2015).
- 3. Danish Energy Agency (DEA). (s.f.). Levelized Cost of Energy (LCoE) Calculator.
- 4. Decreto Nº 1.274 Reglamento de Concesiones, Permisos y Licencias para la Prestación del Servicio de Energía Eléctrica, Ecuador. (31 de mazo de 1998).
- 5. Decreto N° 2.066 Reglamento general de la Ley de régimen del sector eléctrico, Ecuador. (18 de Septiembre de 1996). Ecuador.
- 6. International Energy Agency (IEA) & Nuclear Energy Agency (NEA). (2020). *Projected Costs of Generating Electricity 2020 Edition.*
- 7. LAZARD. (2016). Análisis del Costo Nivelado de la Energía (LCOE).
- 8. Ley 24/2013, España. (26 de diciembre de 2013).
- 9. Ley de la Industria Eléctrica, México. (28 de abril de 2014).
- 10. Losana, A. I. (Junio de 2014). Guía breve para la aplicación de la Orden de Renovables. *Gómez-Acebo & Pombo*. Obtenido de Gómez-Acebo & Pombo.
- 11. National Renewable Energy Laboratory (NREL). (2016). Obtenido de https://www.nrel.gov/analysis/tech-footprint.html
- 12. Orden IET/1045/2014, España. (16 de junio de 2014).
- 13. Pontificia Universidad Católica del Perú. (2008). Regulación y supervisión del sector eléctrico.
- 14. Programa de Desarrollo del Sistema Eléctrico Nacional 2018-2032 (PRODESEN), México. (s.f.).
- 15. Real Decreto 413/2014, España. (6 de junio de 2014).
- 16. Real Decreto-ley 9/2013, España. (12 de julio de 2013).
- 17. Reglamento de la Ley de la Industria Eléctrica, México. (31 de octubre de 2014).
- 18. Regulación No. CONELEC 003/11 Determinación de la metodología para el cálculo del plazo y de los precios referenciales de los proyectos de generación y autogeneración, Ecuador. (14 de abril de 2011).
- 19. Regulación No. CONELEC 004/11 Tratamiento para la energía producida con Recursos Energéticos Renovable No Convencionales, Ecuador. (14 de abril de 2011).

7. Anexo – Cronograma de consulta pública

	lun 1 feb	mié 3 feb	vie 5 feb	dom 7 feb	mar 9 feb	jue 11 feb	sáb 13 feb	lun 15 feb	mié 17 feb
Comienzo									<u>Fin</u>
lun 1/2/21									mar 16/2/21

Nombre de tarea	Duración	Comienzo	Fin		31 e			1 ene '21			7 feb '21				14 feb '21				
				J	V	S	D	LMXJV	S	D	L M	I X	JV	S	D	L M	X .		
Inicio del Proceso de Consulta Pública	0 días	lun 1/2/21	lun 1/2/21					1/2											
Presentación de posiciones, observaciones o comentarios	5 días	lun 1/2/21	vie 5/2/21						-	\neg									
Socialización	1 día	mié 3/2/21	mié 3/2/21					_	-	\exists	_								
Revisión de comentarios recibidos	3 días	lun 8/2/21	mié 10/2/21							1		_	1						
Entrega de informe de comentarios recibidos	0 días	mié 10/2/21	mié 10/2/21									4	ሐ10/	2					
Revisión de comentarios admisibles	4 días	jue 11/2/21	mar 16/2/21									ì		_	_	_	h		
Entrega de informe de resultados	0 días	mar 16/2/21	mar 16/2/21														16,		